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Abstract. The sensitivity of sonic anemometer-derived stress estimates to the tilt of the anemometer
is investigated. The largest stress errors are shown to occur for unstable stratification (z/L < 0)
and deep convective boundary layers. Three methods for determining the tilt angles relative to a
mean streamline coordinate system and for computing the tilt-corrected stresses are then compared.
The most commonly used method, involving a double rotation of the anemometers’ axes, is shown
to result in significant run-to-run stress errors due to the sampling uncertainty of the mean vertical
velocity. An alternative method, requiring a triple rotation of the anemometer axes, is shown to result
in even greater run-to-run stress errors due to the combined sampling errors of the mean vertical
velocity and the cross-wind stress. For measurements over the sea where the cross-stream stress
is important, the double rotation method is shown to overestimate the surface stress, due to the
uncorrected lateral tilt component. A third method, using a planar fit technique, is shown to reduce
the run-to-run stress errors due to sampling effects, and provides an unbiased estimate of the lateral
stress.
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1. Introduction

The fact that large errors in the measurement of the horizontal momentum flux can
result from relatively small errors in the alignment of turbulent wind sensors has
long been known (Pond, 1968; Deacon, 1968; Kaimal and Haugen, 1969; Dyer
and Hicks, 1972; Dyer, 1981). The source of the large momentum flux errors is the
cross contamination of velocities that occurs in a tilted sensor, such that fluctuations
in the longitudinal components of the wind appear as vertical velocity fluctuations,
and vice versa.

In level terrain the most straightforward solution is to be certain that the turbu-
lent wind sensors are exceedingly close to being in the true horizontal and vertical
planes. Kaimal and Haugen (1969) suggest that in perfectly level terrain the anem-
ometers be leveled to within 0.1 degree. Alternatively, if the magnitude of the tilt
of the sensor is known to a similar 0.1 degree accuracy, the measured velocity
time series (and average stress) can be corrected in a post analysis to the true
horizontal/vertical coordinate system. In either case, a very accurate inclinometer
is required, and the terrain must be level to a small fraction of a degree.
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In many micro-meteorological field programs, the local terrain is not level to
this precision. Over sloping terrain the most useful coordinate system for the ana-
lysis of surface-layer turbulence data is a mean streamline coordinate system. For
measurements close to the surface in gently sloping terrain, so that flow separation
is avoided, the mean streamlines will closely parallel the terrain, and the mean
streamline coordinate system can also be considered to be a terrain-following co-
ordinate system. Therefore, in the mean streamline coordinate system thex-axis is
parallel to the local mean wind; thez-axis is orthogonal tox, and perpendicular
to and up from the plane of the local terrain; and they-axis lies in the plane
of the local terrain in such a direction that a right-handed coordinate system re-
sults.

There are several reasons for the choice of a streamline coordinate system in
sloping terrain. The first is to make the data readily comparable to analytical the-
ories, which are most easily cast in the streamwise coordinate system (Finnigan,
1983, 1992; Kaimal and Finnigan, 1994).

The second reason is to generate parameterizations that minimize the effect of
the sloping terrain, so that results are easily comparable to measurements taken
over a flat surface. If an anemometer is placed in a true vertical coordinate system
over sloping terrain, fluctuations in the streamwise velocity will create large appar-
ent stresses that are a function of the slope angle relative to the wind direction, and
comparison to turbulence measurements over flat terrain would be difficult. If in-
stead the surface-layer turbulence data are analyzed in a coordinate system aligned
with the mean streamlines, the variance of the alongslope wind will not produce
an apparent stress. The stress in the streamwise coordinate system will then be
independent of terrain slope and direction to first order, and can be compared to
level terrain results.

One caveat to this approach is that it neglects the effect the terrain slope will
have on altering the shape of the low-level wind profile in the presence of diabatic
effects, which will modify the surface-layer flux-profile relations. Surface heating
or cooling generates horizontal pressure gradient forces (PGFs) that create upslope
or downslope flows. In the case of the convective boundary layer, where surface
heating typically warms a deep boundary layer, the height scale for the slope-
induced PGF will be large, so that within the relatively shallow surface layer the
induced PGF will be nearly constant. The surface layer then experiences a different
PGF than it would over level terrain, but the PGF is nearly height-independent,
and the flux-profile relations for level terrain will still closely apply. In contrast,
for stable boundary layers, the surface cooling may be restricted to a boundary-
layer depth not much greater than the surface layer, and a PGF that varies rapidly
with height in the surface layer is possible. In this case, utilizing a mean stream-
line coordinate system will significantly reduce the terrain effects, but noticeable
differences from measurements in level terrain may still be possible.

A third reason to use streamline coordinates is to produce turbulence para-
meterizations that are easily implemented in numerical models. We note that in
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numerical weather prediction models that use generalized vertical coordinate sys-
tems (e.g., sigma, isentropic, or isobaric) theu andv momentum equations and
turbulence parameterization schemes are still defined in a true vertical coordinate
system (Pielke, 1984), with only the pressure gradient forces modified to account
for the effect of the terrain. This might lead one to conclude that turbulence meas-
urements taken over sloping terrain and parameterization schemes developed from
these measurements should also use a true vertical coordinate system. However,
the turbulence parameterizations in numerical models are generally independent
of terrain slope, and specifically assume that the turbulence is horizontally homo-
geneous. Over sloping terrain the turbulence is not horizontally homogeneous in a
true vertical coordinate system. However, if the turbulence parameterizations are
developed and implemented in a streamline coordinate system, then the horizontal
homogeneity approximation still applies to first order, and parameterizations can be
readily developed for use in numerical models. The effect of sub-grid scale undu-
lations in the topography can then be taken into account in these numerical models
through separate commonly used form drag (for neutral or unstable stratification)
and gravity wave drag parameterizations (for stable stratification), as discussed by
Garratt (1992).

Although there are valid reasons for choosing a streamwise coordinate system
in sloping terrain, we note that tilting of the turbulence sensors into a streamwise
direction to eliminate flow distortion caused by booms or other supporting struc-
tures is insufficient (Oost et al., 1994). Wyngaard (1981) finds that for flow past
a circular cylinder, tilting the sensors into the streamwise direction only reduces
the flow distortion errors by approximately 50%. To properly account for flow
distortion, analytic, numerical, or laboratory derived corrections should be applied.

Finally, we note that in some circumstances, the problem of stress measurement
applies to cross-stream as well as to the along-stream components. By using K-
theory, the lateral stress can be related to the lateral shear of the mean wind. In
the baroclinic boundary layer the cross-stream mean wind shear and stress can
be significant (Lenschow et al., 1980). However, for surface-layer measurements,
it is generally presumed that the lateral shear is small compared to the longit-
udinal shear, even in strongly baroclinic conditions, and that|vw| � |uw|. In
contrast, over the sea the cross-stream stress need not be small if the surface wave
field propagates in a direction different from the mean wind. Measurements of
cross-stream stresses over the sea have been reported (Geernaert, 1988), includ-
ing measurements of momentum transport from the wave field to the atmosphere
when the mean wind field is near calm (Grachev and Fairall, 2001). Therefore,
stress measurements over the sea present the additional complication that both the
longitudinal and cross-stream stress components are of interest, and the effect of
instrument tilt on both components must be considered.

In this paper we review the equations for determining turbulence covariance er-
rors for sensors that are tilted relative to the streamline coordinate system. We then
contrast three methods for aligning turbulent wind sensors in the mean streamline
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direction, and consider the effect of mean and turbulence sampling errors on the
determination of the streamwise coordinate system, and on the streamwise and
cross-stream components of the stress. The advantages and disadvantages of each
method are discussed for field measurements taken both over land and at sea.

2. Coordinate Transformation Equations

Equations for the conversion of the mean wind and stress components between two
orthogonal coordinate systems with different orientations, presented in the context
of assessing anemometer tilt angles, were first given by Tanner and Thurtell (1969),
and later by Hyson et al. (1977). Here we present the equations for the conversion
between two coordinate systems using a matrix formulation, including a discussion
of the approximations involved in their derivation.

Equations for the transformation of velocities measured in the coordinate sys-
temx, y, z with unit vectorsi, j , k to a rotated systemx′, y′, z′ with unit vectorsi′,
j ′, k can be expressed (Goldstein, 1981) as u′

v′
w′

 = A

 u

v

w

 , (1)

whereA is a 3× 3 matrix of the direction cosines between the two coordinate
systems, i.e.,

A11 = cos(i′, i) = i′ · i

A12 = cos(i′, j ) = i′ · j etc.

Because the matrixA is a rotation, only 3 of the 9 elements of the array are
independent. The matrix is most often specified by three Euler angles,α, β andγ ,
defined as three successive angles of rotation about a choice of three non-parallel
axes of rotation. Various conventions exist on the choice and order of these axes of
rotation. A convention that is well suited for small angular differences between the
two coordinate systems is one in which each rotation is about a different principal
axis (Goldstein, 1981). For application to anemometer tilts, we define the first
rotation angleα as the pitch angle about the originaly-axis; the second rotation
is the roll angleβ measured about the new or intermediatex-axis; and the yaw
angle is the final rotationγ about the newz-axis (Figure 1). In each step a positive
rotation angle is defined as being a clockwise rotation when looking down the
axis of rotation toward the origin, from the original to the transformed coordinate
system. We refer to this rotation order as the “yxz” convention. For each of these
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three rotations, the effect of the rotation can be expressed in terms of the rotation
matricesD, C, andB, given by

B =
 cosγ − sinγ 0

sinγ cosγ 0
0 0 0

 , C =
 1 0 0

0 cosβ − sinβ
0 sinβ cosβ

 ,

D =
 cosα 0 sinα

0 1 0
− sinα 0 cosα

 . (2)

The direction cosine matrixA given by

A = BCD (3)

represents the combined effect of these three sequential rotations.
We note that to be exact one must measure the pitch and roll angles in the

same order as the matrix multiplication in Equation (3), asA changes with the
order of placement of theB, C andD matrices because matrix multiplication is not
commutative. Fortunately, for small rotation angles, different orders of rotations
result in small differences in the direction cosine matrices. For example, for tilt
anglesα = 1◦, β = 2◦, andγ = 0◦, the difference in measured stresses between
theyxz convention and axyz order of rotation can be shown to be less than 0.1%
of the true stress. Thus, for most reasonable situations of tilted anemometers, the
order of application of the pitch and roll angles is not important. However, for tilt
angles of≈ 10◦, a change in the order of correction ofα andβ can produce a
change in the ‘corrected’ stress that is as large as 10% of the true stress.

In contrast to pitch and roll anglesα andβ, the rotation angleγ will generally be
large, as it represents the azimuthal rotation ofx andy aboutz to forcev̄ = 0. The
matrixA therefore will be sensitive to the position of the rotation matrixB relative
to C andD. Consistent with our definition ofα andβ as being the fixed angles
necessary to rotate the sonic into a plane parallel to that of the local terrain slope,
the azimuthal rotation must be applied last. If it were applied first, then differentα’s
andβ’s would be found for each occurrence of a different wind azimuth direction.

For correction of a tilted anemometer, let us associate the primed coordinate
system defined in Equation (1) with the measured velocities,um, vm, andwm, and
the anglesα, β andγ with the ordered rotations necessary to place the anemometer
in a streamwise coordinate system. Since the matricesB, C, andD are orthogonal,
so is matrixA, and the inverse ofA is equal to its transpose,A−1 = AT so that umvm

wm

 = A

 uv
w

 and

 uv
w

 = AT

 umvm
wm

 . (4)
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Figure 1.Definitions of the tilt anglesα, β, andγ for theyxz convention. The original axes arex, y,
z, the final axes arex′, y′, z′, and intermediate axes arexI , yI , zI .

We note that Equation (4) is then equivalent to the set of rotations specified by
Hyson et al. (1977).

In place of the ordered pitch and roll anglesα andβ, in micro-meteorological
applications inclination angles often are measured, using bubble levels or other
similar devices. The inclination angles are the angles between the anemometer’s
x-axis and the horizontal plane and between the anemometer’sy-axis and the
horizontal plane, and have no order associated with them. Knowledge of these
angles is equivalent to specifyinga31 anda32 in A. A third rotation about the true
vertical axis to align the mean wind with thex-axis completely specifiesA. Thus
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the inclination angles allow one to directly determine the elements ofA, without
calculating pitch and roll angles as an intermediate step. The resulting rotation
matrix, based on inclination angles, can be used to calculate the stress tensor over
a flat surface. However, since the inclination angles are measured relative to the
horizontal plane, they can not be used to align with mean streamline coordinates
over sloping terrain.

In Section 6 we describe a planar fit method that determines the angles between
the local slope of the surface and the axes of the sonic anemometer. When this
method is used to specifya31 anda32 in A along with a third angle to align the
x-axis with the mean wind, the result is a rotation matrix that can be used to find
the stress in coordinates aligned with the mean streamlines over either a flat or a
sloping surface.

3. Sensitivity of Turbulence Moments to Tilt Angle

We briefly review the sensitivity of stress measurements to tilt angles, considering
first the simplified case of a wind along thex-axis, with a tilt only in thex–z
plane so thatγ = β = 0. Using Equations (2)–(4) and applying a straightfor-
ward Reynolds decomposition one obtains the longitudinal and cross stream stress
components,

umwm = uw cos(2α)+ 1

2
(w2− u2) sin(2α), (5)

vmwm = vw(cosα)+ uv(sinα). (6)

Evaluation of Equations (5) and (6) is straightforward given the following em-
pirical relationships for the velocity standard deviationsσu = (u2)1/2 in unstable
conditions (Panofsky et al., 1977)

σu,v

u∗
=
(

12− 0.5
Zi

L

)1/3

, (7)

σw

u∗
= 1.25

(
1− 3

z

L

)1/3
. (8)

The longitudinal stress error due to an anemometer tilt of one degree in the
x–z plane is shown in Figure 2 as a function ofz/L, andz/Zi. The magnitude
of the fractional stress error, defined as|(umwm − uw)/uw|, is largest for deep,
convective boundary layers. Atz/L = −1 andz/Zi = 1/500, the fractional error
is 64%. Since sin(2α) ≈ 2α for small angles, Figure 2 can readily be used to
linearly scale the stress error for other small angles (e.g., forα = 0.1 degrees, the
fractional error is 6.4% atz/L = −1 andz/Zi = 1/500).



134 JAMES M. WILCZAK ET AL.

Figure 2. The percent longitudinal stress error as a function ofz/L andz/Zi , for a tilt angle of 1
degree.

The cross-stream stress error expressed as a fraction of the true longitudinal
stress,|(vmwm − vw)/uw|, will be dependent on the ratiouv/uw. The ensemble
value of this ratio can be non-zero due to spatial variations of surface roughness or
to topography. For a single data run averaging period (typically 15 to 60 min), the
ratio may also be large due to sampling error, and these sampling errors can result
in a significantvmwm. The effects of sampling errors will be discussed further in
Section 5.

We note that, if instead the tilt error is assumed to be in they–z plane only, the
longitudinal and cross-stream stress errors become

umwm = uw cos(β)+ uv sin(2α), (9)

vmwm = vw(cos 2β)− 1

2
(w2− ν2) sin(2β). (10)

In this case the cross-stream stress error is as large as the longitudinal stress error
for a tilt in the x–z plane discussed previously. This has important consequences
for tilt correction algorithms applied over the sea where the true cross-stream stress
may be important, as will be discussed later.
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For stable conditions measurements of the velocity variances are inconclusive
(Garratt, 1992), and evaluation of Equations (5) and (6) is more difficult. Generally,
normalized velocity variances do not differ from their neutral values significantly,
in which case errors of approximately 6% per degree of tilt in thex–z andy–z
planes are expected foruw andvw.

For completeness we note that assumingγ = 0 andβ = 0, the relations
between the measured and true covariances become

u2
m = u2(cos2 α)+ uw(2 cosα sinα)+ w2(sin2α), (11)

v2
m = v2, (12)

w2
m = u2(sin2 α)+ w2(cos2 α)− uw(2 cosα sinα), (13)

wmTm = wT (cosα)− uT (sinα). (14)

Normalizing the velocity variances byuw, the error in the normalized longitudinal
and vertical velocity variances is approximately 3.5% per degree. Using the ob-
served heat flux ratiouT /wT = −5.4φmφh for unstable stratification (Hogstrom,
1990), whereφm = (1 − 19L)−1/4 andφh = 0.95(1 − 12z/L)−1/2 (Hogstrom,
1988), the error in the vertical heat flux goes from approximately 9% per degree of
tilt at neutral stability to 1% per degree atz/L = −1.

If the tilt error is only in they–z plane so thatγ = 0 andα = 0, the above error
equations become

u2
m = u2, (15)

v2
m = ν2(cos2 β)− vw(2 cosβ sinβ)+ w2(sin2β), (16)

w2
m = v2(sin2 β)+ w2(cos2 β)+ vw(2 sinβ cosβ), (17)

wmTm = wT (cosβ)+ vT (sinβ) (18)

so that over land, where the true value of the ensemble cross-stream stress is ex-
pected to be zero, the errors are negligibly small. However, if the measurements
are taken over the ocean, errors in the normalized velocity variances will go as
approximately 3.5% per degree times the ratiovw/uw.

It is of interest to consider the effects of anemometer tilt on the third order velo-
city moments that form the turbulent transport term in the TKE budget. Assuming
γ = 0,β = 0, and neglecting terms (sin2 α) and (sin3 α) gives

u2
mwm = u2w(cos3 α)− u3(sinα cos2 α)+ uw2(2 sinα cos2α), (19)

v2
mwm = v2w(cosα)− uv2(sinα)+ uvw(2 sinα cosα), (20)
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w3
m = w3(cos3 α)− uw2(3 sinα cos2 α). (21)

These errors depend on the termsu3, uw2, uv2, anduvw. The true ensemble values
of the last two of these are expected to be small, relative tou2∗. Wyngaard et al.
(1971) have shown thatuw2/u3∗ varies from near zero at neutral to approximately
−1.5 atz/L = −1. Wyngaard and Cote (1971) have shown thatu2w/u3∗ andw3/u3∗
vary from near zero at neutral to approximately 2 atz/L = −1. Therefore the
uw2 tilt term will result in a small, approximately 2.5% per degree error in the
measurement of bothu2w/u3∗ andw3/u3∗. If instead we assume that the tilt error
is in they–z plane, similar values are found for the errors inv2w/u3∗ andw3/u3∗.
Although the skewness of longitudinal velocity is small in the surface layer, Chu
et al. (1996) find non-trivial values ofu3/u3∗, ranging from approximately 0.7 at
neutral to−1.7 for unstable stratification. For unstable stratification this will reduce
the effect of the already smalluw2/u2∗ term in theu2w/u3∗ equation. In summary,
for all three components of the TKE turbulent transport term, tilt errors will have a
much smaller effect than they do on the stress.

4. Sonic Rotation by Individual Data Run

In the previous section equations were derived allowing for the correction of meas-
ured turbulent covariances, given a set of anemometer tilt angles. These angles
represent the amount of rotation needed to place the anemometer into the desired
coordinate system, which we have taken to be the streamwise coordinate system.

The most commonly applied technique for determining the angles necessary to
place the sonic anemometer into a streamwise coordinate system involves a series
of two rotations, applied at the end of each turbulent averaging period. This method
was first proposed by Tanner and Thurtell (1969), and is described in some detail
in Kaimal and Finnigan (1994). The first rotation setsv̄ = 0 by swinging thex and
y-axes about thez-axis so that the new velocities are given by

u1 = um cosθ + vmsinθ, (22)

v1 = −um sinθ + vm cosθ, (23)

w1 = wm, (24)

where

θ = tan−1

(
v̄m

ūm

)
(25)

and where subscript 1 denotes the velocities after the first rotation. The second
rotation setsw = 0 by swinging the new x andz-axes abouty so that thex-axis
points in the mean streamline direction. The final velocities are then given by

u2 = u1 cosφ + w1 sinφ, (26)
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v2 = v1, (27)

w2 = −u1 sinφ + w1 cosφ, (28)

where

φ = tan−1

(
w̄1

ū1

)
. (29)

The above double rotation aligns thex-axis with the mean wind vector, but
allows they andz-axes to freely rotate aboutx. That is, there are an infinite number
of anemometer rotations that simultaneously satisfyv̄ = w̄ = 0. The anemometer’s
final orientation in they–z plane after the double rotation depends on its initial
orientation. The previous analysis shows that if the error in they–z plane is only 1
degree then the error invw can be of the same order as the true stress. McMillen
(1988) suggests that (over land) a third sonic rotation be applied to remove this
ambiguity by requiring thatvw = 0. In this step the newy andz-axes are rotated
around x until the cross-stream stress becomes zero, and the third set of rotation
equations then become (Kaimal and Finnigan, 1994)

u3 = u2, (30)

v3 = v2 cosψ + w2 sinψ, (31)

w3 = −v2 sinψ + w3 cosψ, (32)

where

ψ = tan−1

[
2v2w2

(v2
2 − w2

2)

]
. (33)

In the context of the rotation matrices discussed in Section 2, the double rotation
(DR) method rotates first about the yaw angle, and second about the pitch angle.
All of the remaining uncertainty in the tilt is placed into they–z plane. For the
triple rotation (TR) correction scheme, the order of correction is yaw, then pitch,
and then roll. We note that the anglesφ andψ found by the DR or TR schemes are
fundamentally different fromα andβ defined in Section 2. Whereasα andβ are
fixed quantities for a given sonic anemometer tilt,φ andψ will depend both on the
fixed tilt of the anemometer and on the wind direction.
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5. Sampling Error Effects

The double rotation (DR) and triple rotation (TR) tilt correction schemes presented
above implicitly assume that the measured mean vertical velocity (and cross-wind
stress for TR) are their true ensemble values. However, due to the finite length
of the time series for each data run, sampling errors will exist for all turbulence
variables. The mean vertical velocity sampling error can be estimated as

w̄se = σw/
√
n, (34)

wheren is the number of independent samples ofw. The number of independent
samples in a time series of lengthT is given byn = T /Is, whereIs is the Eulerian
turbulence integral time scale. For neutral stabilityIs scales asIs ≈ z/ū (Wyn-
gaard, 1973). Thus forz = 10 m,ū =5 m s−1, T = 15 min,σw/u∗ = 1.25, andu∗ =
0.3 m s−1, w̄se is 0.01–0.02 m s−1. For unstable stratification the integral scale will
be larger. Panofsky and Dutton (1984) suggest thatIs = 1/(5fmax), wherefmax

is the peak of the spectrum plotted asf S(f ). Using values offmax from Kaimal
et al. (1972), we find thatIs for unstable stratification can be a factor of 5 larger
than at neutral stability. Usingσw/u∗ ≈ 2 for unstable stratification (Wyngaard et
al., 1971), we find that̄wse is close to 0.06 m s−1. These numbers agree well with
common experience for surface layer data sets.

For a given mean vertical velocity sampling error, both the DR and TR meth-
ods will wrongly produce a tilt error correction in thex-z plane given byαse =
sin−1(wse/ū). Typical values ofw̄se for a 15-min data run can therefore easily
produce artificial tilt “corrections” on the order of 0.5 degree. Tilt errors of this
magnitude were shown in Section 2 to result in longitudinal stress errors of 10–
40% of the true stress for convective boundary layers. The magnitude of this error
will tend to be larger for weaker wind speeds because of the dependency ofαse on
ū.

Sampling errors invw can also lead to erratic corrections for the TR scheme.
McMillen (1988) suggests throwing a data run out if the derived correction angle
is greater than 10 degrees. Kaimal and Finnigan (1994) suggest applying some
sort of smoothing filter to the TR scheme over multiple runs to reduce this effect.
However, since the anglesφ andψ depend on the wind azimuth, applying such a
filter may be problematic when the mean wind direction is changing with time.

So far we have considered the effect of the individual run vertical velocity
sampling error on the individual run stress error. The effect of a symmetric distribu-
tion of w̄ses on a global stress estimate for a series of data runs is next investigated
by considering two runs with equal but opposite values ofw̄ses, with all other mean
and turbulent data remaining the same, so that two equal but opposite values of
αses result. From the tilt correction Equation (5), the average stress from these two
runs is not the true stress, but the true stress reduced by a factor of cos(2αse). The
magnitude of this residual error is for all practical purposes quite small, and the
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effect of individual run sampling errors is to produce individual run stress errors
without changing the global stress estimate. However, in the extreme situation of
light winds and very short averaging times, vertical velocity sampling errors could
produce a low bias to the global stress.

6. Planar Fit (PF) Method

A third, relatively unknown, technique for determining the orientation of a sonic
anemometer relative to a streamline coordinate system was developed by Steve
Stage (1977, unpublished research). Consider a sonic anemometer that is oriented
with its vertical axis perpendicular to the local terrain slope, so that itsx andy-
axes measure the two components of the streamwise flow. If the anemometer is
then tilted, we can write

−→u p = P(−→u m −−→c ), (35)

where−→u m is the measured wind vector,−→u p is the wind vector in a mean stream-
line coordinate system (not yet rotated into the mean wind direction),P is a partial
rotation matrix that places thez-axis perpendicular to the plane of the mean stream-
lines, and−→c is the mean offset error in the measured winds due to instrument error.
The matrixP is defined as

P = DTCT, (36)

where matricesC andD are given by Equation (2). The mean wind components
can then be written as

ūp = p11(ūm − c1)+ p12(v̄m − c2)+ p13(w̄m − c3),

v̄p = p21(ūm − c1)+ p22(v̄m − c2)+ p23(w̄m − c3, (37)

w̄p = p31(ūm − c1)+ p32(v̄m − c2)+ p33(w̄m − c3).

The mean offset error−→c is due to the fact that it is extremely difficult to ‘zero’
the transducers on a sonic to eliminate mean wind speed biases. In practice, the
mean bias is often measured by placing an enclosure over the sonic to block the
wind. Using this technique it is difficult to achieve an accuracy better than sev-
eral tens of cm s−1. Although biases on the order of several tens of mm s−1 will
normally be present in all three velocity components, the tilt coefficients are most
sensitive to the vertical component. For example, consider the case of a tilt in the
x–z direction of 1.0◦ with a mean wind of̄um = 5 m s−1, which would generate a
measured mean vertical velocity ofw̄m = ūm tan(1◦) = 0.0872 m s−1. If we now
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assume that there exists aw̄ bias of 0.02 m s−1 and noū bias, then the modified tilt
angle given by

θ = tan−1

(
w̄m − w̄bias

ūm − ūbias

)
(38)

becomes 0.770◦ instead of 1.0◦. If, however, there are 0.02 m s−1 biases in bothw
andu, then the tilt angle becomes 0.773◦. For a range of̄u and v̄ of at least 5 m
s−1 in the data set, the effect of thēu andv̄ mean biases will be negligible, but the
w̄ bias can be significant. Therefore, the PF method that we recommend contains
a mean offset in the measured vertical velocity. The mean offsets in the horizontal
components can not be obtained by the PF method, but they do not cause significant
contamination in the determination of the rotation matrix.

The mean streamline coordinate system is defined to be aligned so thatw̄p = 0.
From Equation (37) we then have

w̄m = c3− p31

p33
ūm − p32

P33
v̄m

= b0+ b1ūm + b2v̄m. (39)

The PF method uses wind data and the technique of multiple linear regression
to obtain values forb0, b1, andb2. Onceb1 andb2 are known, there are two possible
ways to proceed. The first uses the following relations valid for small inclination
angles

tanα = −b1,

tanβ = b2 (40)

to get

sinα = −b1/

√
1+ b2

1,

cosα = 1/
√

1+ b2
1,

sinβ = b2/
√

1+ b2,

cosβ = 1/
√

1+ b2
2. (41)

Substitution of Equation (41) into Equation (36) then gives all of the elements of
matrix P.
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The second approach, valid also for large inclination angles, is to use Equation
(39) and the orthogonality conditionp2

31+ p2
32+ p2

33 = 1 to directly solve forp31,
p32, andp33,

p31 = −b1√
b2

1 + b2
2 + 1

,

p32 = −b2√
b2

1 + b2
2 + 1

, (42)

p33 = 1√
b2

1 + b2
2 + 1

.

The other components ofP can then be found by noting that from Equation (36)

p31 = sinα,

p32 = − cosα sinβ, (43)

p33 = cosα cosβ,

so that

tanβ = −p32/p33,

sinβ = −p32/

√
p2

32+ p2
33,

cosβ = p33/

√
p2

32+ p2
33, (44)

sinα = p31,

cosα =
√
p2

32+ p2
33.

Substitution of Equations (44) and (42) into Equation (36) gives all of the elements
of matrix P in terms ofb1 andb2.

Once the matrixP has been found, multiplying the horizontal velocities and
stress tensor byP places them in the plane of the mean streamlines. These can then
be rotated into the mean wind direction for each run through multiplication by the
matrix

M =
 cosγ sinγ 0
− sinγ cosγ 0

0 0 1

 , (45)
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where

γ = tan−1

(
v̄p

ūp

)
. (46)

The matrixP is dependent on theb coefficients, which can be found with the
PF method from Equation (39) using multiple linear regression. To find the best-fit
plane to the velocity data (theb coefficients), we wish to minimize the functionS,
where

S =
∑
n

(w̄i − b0− b1ūi − b2v̄i)
2 (47)

and whereūi , v̄i , andw̄i are the mean velocities for each data run, measured in
the sonic anemometer’s coordinate system. DifferentiatingS with respect tob0, b1,
andb2 and setting each partial derivative equal to zero results in the three normal
equations,

nb0 +
(∑

ūi

)
b1 +

(∑
v̄i

)
b2 =

∑
w̄i,(∑

ūi

)
b0 +

(∑
ū2
i

)
b1 +

(∑
ūi v̄i

)
b2 =

∑
ūi w̄i, (48)(∑

v̄i

)
b0 +

(∑
ūi v̄i

)
b1+

(∑
v̄2
i

)
b2 =

∑
v̄i w̄i .

The solution of these three equations provides the linear regression ofw̄m on ūm
andv̄m. In Appendix A we provide a sample program to solve for the coefficients
using matrix notation.

Note that the PF method can only be applied to sets of data when the position
of the anemometer does not change. If the anemometer is moved or remounted,
or if the bias in the vertical component is adjusted during an experiment, then a
separate PF fit must be done for each period between changes. In practice, one can
check for changes in the orientation of the anemometer by applying the technique
to sub-samples of the entire data set and verifying that the calculated tilt angles do
not differ significantly.

In summary, the PF method is applied using the following steps. Compute the
mean wind vector and the stress tensor for each run, that is, for each averaging
interval, in the sonic anemometer’s coordinate system. Perform a linear regression
analysis using the components of the mean wind vectors to obtain the coefficients
b0, b1, andb2 and then the matrixP. UseP to obtain the mean wind vectors and
stress tensors (or velocity time series) in a coordinate system having itsz-axis
perpendicular to the mean streamlines. Rotate these intermediate winds and the
stress tensor for each run so that thex-axis is along the mean wind andv̄ = 0. We
note that although the vertical velocity averaged over the entire data set is zero, the
mean vertical velocities may be non-zero for individual data runs, in large part due
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to mesoscale motions or due to sampling limitations. This residual mean vertical
velocity is subtracted for each run so that it does not contribute to the Reynolds
stress.

7. Applications to the RASEX Data Set

To illustrate differences among the PF, DR, and TR rotation algorithms, we com-
pare stresses calculated using each of the three methods for a single turbulence
data set. The data set we use consists of 362 15-min data runs taken during the
autumn field campaign of the Riso Air Sea Experiment (RASEX) (Wilczak et al.,
1999). The data were taken using an asymmetric Gill Solent sonic anemometer
at a height of 10 m, on a sea mast located≈2 km offshore in water≈4 m deep.
The transducers on the Gill anemometer have an ‘hourglass’ orientation, but after
realtime data processing the anemometer outputs three orthogonal velocitiesu, v,
andw in the sonic relative coordinate system. The data were collected over a range
of wind directions from 249◦ to 325◦, that had an open fetch of greater than 15 km.
Stresses were computed for each 15-min data run, and then every two consecutive
runs were averaged to generate 181 independent stress measurements.

Figure 3a shows the measured mean vertical velocity as a function of the
measuredū and v̄ velocity components. It is apparent that the measuredw̄ ve-
locity increases both with decreasingū and increasinḡv. Fitting a plane through
the data using the routine given in the Appendix results inb0 = 0.0054 m s−1,
b1 = −0.0304, andb2 = 0.0188, so that the tilt angle in thex–z plane is−1.74
degrees, and the tilt angle in they–z plane is 1.07 degrees. The best-fit plane is
found to account for 77% of the variance of the mean vertical velocities. Residual
vertical velocities that remain after subtracting the best-fit plane are shown in Fig-
ure 3b. The magnitudes of the residual vertical velocities are clearly much smaller,
and their distribution is nearly random.

Next we compute longitudinal and lateral stresses for each of the data runs using
the three methods. Figure 4a shows the fractional difference in the longitudinal
stresses between the PF and DR methods. The mean stresses averaged over the 181
runs are similar (a 3.3% difference), but there is a significant run-to-run variation.
This variation increases at smaller values of the stress, which is consistent with the
expected run-to-run errors in the DR scheme due to sampling errors of the mean
vertical velocity. To determine the origin of the 3.3% mean bias, for each 15-min
run we calculateαse = αDR − αPF, whereαDR is the DR method longitudinal tilt
angle, andαPF is the PF tilt in the direction of the run mean wind azimuth (Figure
5a). The sign of the 3.3% bias is consistent with that expected for a symmetric
distribution ofαses, as discussed in Section 5. However, the average of|αse| is only
0.35 degrees, which is too small to explain the bias. We conclude, therefore, that
the bias is due to the limited number of samples (181) in our data set, and that with
a much larger data set the bias would decrease to a negligible value.



144 JAMES M. WILCZAK ET AL.

Figure 3a.Mean vertical velocities as a function of horizontal velocities in the sonic anemometer
coordinate system (a) as measured, and (b) after subtracting the best fit plane.

In contrast to the longitudinal stress, the cross-stream DR stress (Figure 4b)
has a large bias relative to the PF cross-stream stress, averaging 26% of the mean
longitudinal stress. This is due to the 1.07 degreey–z tilt component, which is not
accounted for in the DR method. This bias can be either sign, depending on the
orientation of the anemometer in they–z plane. Next, the magnitudes of the vector
stresses,(uw2+ vw2)1/2, calculated with the PF and DR methods are compared in
Figure 4d. Because of the bias in the DR cross-stream component, the vector stress
bias in Figure 4d has changed relative to the longitudinal stress bias in Figure 4a by
6.7% (from+3.3 to−3.4%). The DR method will always provide a larger mean
vector stress magnitude than the PF method, because it includes the meanvw bias
shown in Figure 4b.

Finally, we compare the longitudinal stresses using the PF and TR methods
(Figure 4c). With standard deviations of 0.28 and 0.17, respectively (Figure 4a), the
scatter of the stress differences has increased compared to those for the PF and DR
method. The origin of this greater scatter can be found by examiningψse for each
of the 15-min averages, whereψse = ψDR−ψPF (Figure 5b). As before,ψDR is the
value of the lateral tilt computed using the DR method, andψPF is the component
of the PF tilt perpendicular to the run mean wind azimuth. Typical values ofψse
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Figure 3b.

are 3–4 degrees, with values frequently exceeding 5 degrees, compared to a typical
1 degree PF lateral tilt. These large, unrealistic tilt angles then change the direction
of the z axis in the TR method, and produce greater scatter in the longitudinal
stresses.

8. Summary and Discussion

Three different methods for computing the stress from a sonic anemometer have
been described and their results compared. The most commonly used method, the
double rotation (DR) scheme, is shown to have two disadvantages. The first is that
the sampling error of the mean vertical velocity results in a tilt angle estimation
error. This adds a random noise component to the longitudinal stress estimate,
making individual data run estimates of the stress more uncertain. Second, since
the DR method does not correct for the lateral tilt component, large mean biases in
the cross-stream stress result, which can be important in applications over the sea.
Because of large sampling errors in the measured lateral stress, the triple rotation
(TR) method increases the run-to-run noise in the longitudinal stress component.
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Figure 4.Comparison of stresses using three different methods: (a) differences between the PF and
DR longitudinal stresses, normalized by the PF longitudinal stress, as a function of the PF longitud-
inal stress; (b) differences between the PF and DR lateral stresses, normalized by the PF longitudinal
stress, as a function of the PF longitudinal stress; (c) differences between the PF and TR longitudinal
stresses, normalized by the PF longitudinal stress, as a function of the PF longitudinal stress; (d)
differences between the magnitude of the vector stress between the PF and DR methods, normalized
by the magnitude of the PF vector stress.

Also, since it assumes that the true lateral stress is zero, it cannot be used for
measurements over the sea where the lateral stress term may be important.

The planar fit (PF) method computes a single set of anemometer tilt angles
for a set of data runs. Since many data runs are used to determine the PF tilt
angles, it is much less susceptible to sampling errors. The method also allows one
to accurately compute the lateral component of the stress. The one disadvantage of
the PF method is that it requires that many data runs be recorded before the stresses
can be computed. In contrast, the DR and TR methods can be applied in real time
to each data run as it is recorded.

Over sloping terrain, the PF method requires that care must be taken that the
tilt of the anemometerand its orientation relative to the terrain slope do not change
over the period of time in which the set of mean velocities has been measured. Over
a flat surface, such as the sea, the only requirement is that the tilt of the anemometer
does not change over the measurement time. Changes in the azimuthal pointing dir-
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Figure 5. (a) The longitudinal (x-z plane) tilt angle due to sampling error with the DR method,
computed as the difference between the DR method’s longitudinal tilt angle and the tilt angle in the
direction of the mean wind for each 15 min data run from the PF method, for each 15 min run. (b)
The lateral tilt angle due to sampling error with the TR method, computed as the difference between
the TR method’s lateral tilt angle and the tilt angle perpendicular to the mean wind for each 15 min
data run from the PF method.

ection of the anemometer, due for example to ship heading changes on a ship-based
system, make no difference, as the surface has no unique direction. The tilts in this
case will be measured relative to the ship. Measurements of the tilt angles using the
PF method for a ship-based sonic anemometer may be problematic, however, due
to large, azimuthally dependent vertical velocities caused by the ship’s distortion
of the flow field, and by slow continuous changes in the tilt of the ship over time.

The three methods described above are applicable for the rotation of velocity
covariances into the streamline coordinate system. Moments that include buoyancy
fluctuations strictly should be computed in a true vertical coordinate system. As
discussed in Section 3, the dependence of the buoyancy flux on the tilt angle is
small, except for near neutral conditions. For the greatest accuracy in the measure-
ment of turbulent fluxes over sloping terrain, anemometers should be mounted as
close to true vertical as possible for the determination of the buoyancy flux, and
then later rotated into a streamline coordinate system to calculate the momentum
flux.

Finally, we note that the PF technique can be used to test for flow distortion
in the anemometer data. If the local terrain follows a plane surface so that the
curvature is small, then the mean vertical velocity, normalized by the horizontal
wind speed, should be a simple sinusoidal function of wind azimuth. Systematic
deviations from this sinusoid (or systematic deviations from zero after the anemo-
meter data have been corrected by the PF technique) would indicate mean vertical
velocities resulting from flow distortion due to nearby structures.
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Appendix A

Implementation of the PF method is simple if one has access to a linear algebra
mathematics package (e.g., Matlab, Maple, Mathematica). Here we provide the
code for determining the sonic tilt angles using Matlab.

The file vel.dat is an array of run-averaged velocity data, where the averaging
is typically 15 to 60 min. The number of rows of data in vel.dat corresponds to the
number of data runs. Each row of vel.dat consists of a set of three measured velocity
components,u, v, andw, in the first, second, and third columns, respectively. The
output file contains the tilt coefficientsb0, b1, andb2.

disp(‘Program to calculate sonic tilt angles’)

fin = fopen(‘c:\matlab\vel.dat’); %open input file

fout = fopen(‘c:\matlab\tilts.dat’,‘w’); %open output file

z=fscanf(fid,‘%g %g %g’,[3,inf]); %read in velocity array

end;

u=z(1,:);

v=z(2,:);

w=z(3,:);

flen=length(u);

su=sum(u); %sums of velocities

sv=sum(v);

sw=sum(w);

suv=sum(u∗v′); %sums of velocity products

suw=sum(u∗w′);
svw=sum(v∗w′);
su2=sum(u∗u′);
sv2=sum(v∗v′);
H=[flen su sv; su su2 suv; sv suv sv2] %create 3 × 3 matrix

g=[sw suw svw]′ %transpose of g

x=H\g %matrix left division

fprintf(flist,‘%10.5f %10.5f %10.5f %6.1f\n’,x,fc); %print b coeffs and # data
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